
 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

197

September
2013

Secure Network ID and Attack Measure

Selection in Virtual Network

S.Uvaraj
 

S.Suresh


Abstract

Cloud security is one of most important issues that has attracted a lot of research and

development effort in past few years. Particularly, attackers can explore vulnerabilities of a

cloud system and compromise virtual machines to deploy further large-scale Distributed Denial-

of-Service (DDoS). DDoS attacks usually involve early stage actions such as multi-step

exploitation, low frequency vulnerability scanning, and compromising identified vulnerable

virtual machines as zombies, and finally DDoS attacks through the compromised zombies.

Within the cloud system, especially the Infrastructure-as a-Service (IaaS) clouds, the detection of

zombie exploration attacks is extremely difficult. This is because cloud users may install

vulnerable applications on their virtual machines. To prevent vulnerable virtual machines from

being compromised in the cloud, we propose a multi phase distributed vulnerability detection,

measurement, and countermeasure selection mechanism called NICE, which is built on attack

graph based analytical models and reconfigurable virtual network-based countermeasures. The

proposed framework leverages Open Flow network programming APIs to build a monitor and

control plane over distributed programmable virtual switches in order to significantly improve

attack detection and mitigate attack consequences. The system and security evaluations

demonstrate the efficiency and effectiveness of the proposed solution.

Keywords - Network Security, Cloud Computing, Intrusion Detection, Attack Graph, Zombie

Detection


 M.E/CSE, Arulmigu Meenakshi Amman College of Engineering, Kanchipuram, India


 B.Tech/IT, Sri Venkateswara College of Engineering, Chennai, India

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

198

September
2013

I. INTRODUCTION

A recent Cloud Security Alliance (CSA) survey shows that among all security issues, abuse and

nefarious use of cloud computing is considered as the top security threat [1], in which attackers

can exploit vulnerabilities in clouds and utilize cloud system resources to deploy attacks. In

traditional data centers, where system administrators have full control over the host machines,

vulnerabilities can be detected and patched by the system administrator in a centralized manner.

However, patching known security holes in cloud data centers, where cloud users usually have

the privilege to control software installed on their managed VMs, may not work effectively and

can violate the Service Level Agreement (SLA). Furthermore, cloud users can install vulnerable

software on their VMs, which essentially contributes to loopholes in cloud security. The

challenge is to establish an effective vulnerability/attack detection and response system for

accurately identifying attacks and minimizing the impact of security breach to cloud users.

In [2], M. Armbrust et al. addressed that protecting”Business continuity and services

availability” from service outages is one of the top concerns in cloud computing systems. In a

cloud system where the infrastructure is shared by potentially millions of users, abuse and

nefarious use of the shared infrastructure benefits attackers to exploit vulnerabilities of the cloud

and use its resource to deploy attacks in more efficient ways [3]. Such attacks are more effective

in the cloud environment since cloud users usually share computing resources, e.g., being

connected through the same switch, sharing with the same data storage and file systems, even

with potential attackers [4]. The similar setup for VMs in the cloud, e.g., virtualization

techniques, VM OS, installed vulnerable software, networking, etc., attracts attackers to

compromise multiple VMs.

In this paper, we propose NICE (Network Intrusion detection and Countermeasure sElection in

virtual network systems) to establish a defense-in-depth intrusion detection framework. For

better attack detection, NICE incorporates attack graph analytical procedures into the intrusion

detection processes. We must note that the design of NICE does not intend to improve any of the

existing intrusion detection algorithms; indeed, NICE employs a reconfigurable virtual

networking approach to detect and counter the attempts to compromise VMs, thus preventing

zombie VMs.

In general, NICE includes two main phases: (1) deploy a lightweight mirroring-based network

intrusion detection agent (NICE-A) on each cloud server to capture and analyze cloud traffic. A

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

199

September
2013

NICE-A periodically scans the virtual system vulnerabilities within a cloud server to establish

Scenario Attack Graph (SAGs), and then based on the severity of identified vulnerability towards

the collaborative attack goals, NICE will decide whether or not to put a VM in network

inspection state. (2) Once a VM enters inspection state, Deep Packet Inspection (DPI) is applied,

and/or virtual network reconfigurations can be deployed to the inspecting VM to make the

potential attack behaviours prominent.

The rest of paper is organized as follows. Section II presents the related work. Section III

describes system approach and implementation. System models are described in Section IV

describes the approach to hardening the network in NICE. The proposed NICE is presented in

Section V and Section VI evaluates NICE in terms of network performance and security. Finally,

Section VII describes future work and concludes this paper.

II. RELATED WORKS

The contributions of NICE are presented as follows:

 We devise NICE, a new multi-phase distributed network intrusion detection and prevention

framework in a virtual networking environment that captures and inspects suspicious cloud

traffic without interrupting users’ applications and cloud services.

 NICE incorporates a software switching solution to quarantine and inspect suspicious VMs for

further investigation and protection. Through programmable network approaches, NICE can

improve the attack detection probability and improve the resiliency to VM exploitation attack

without interrupting existing normal cloud services.

 NICE employs a novel attack graph approach for attack detection and prevention by correlating

attack behavior and also suggests effective countermeasures.

 NICE optimizes the implementation on cloud servers to minimize resource consumption. Our

study shows that NICE consumes less computational overhead compared to proxy-based

network intrusion detection solutions.

Intrusion Detection System (IDS) and firewall are widely used to monitor and detect suspicious

events in the network. However, the false alarms and the large volume of raw alerts from IDS are

two major problems for any IDS implementations. In order to identify the source or target of the

intrusion in the network, especially to detect multi-step attack, the alert correction is a must-have

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

200

September
2013

tool. The primary goal of alert correlation is to provide system support for a global and

condensed view of network attacks by analyzing raw alerts [13]. Many attack graph based alert

correlation techniques have been proposed recently. L. Wang et al. [14] devised an in-memory

structure, called queue graph (QG), to trace alerts matching each exploit in the attack graph.

However, the implicit correlations in this design make it difficult to use the correlated alerts in

the graph for analysis of similar attack scenarios. Roschke et al. [15] proposed a modified attack-

graph-based correlation algorithm to create explicit correlations only by matching alerts to

specific exploitation nodes in the attack graph with multiple mapping functions, and devised an

alert dependencies graph (DG) to group related alerts with multiple correlation criteria. [17]

proposed a Bayesian attack graph (BAG) to address dynamic security risk management problem

and applied a genetic algorithm to solve countermeasure optimization problem.

III. NICE MODELS

In this section, we describe how to utilize attack graphs to model security threats and

vulnerabilities in a virtual networked system, and propose a VM protection model based on

virtual network reconfiguration approaches to prevent VMs from being exploited.

3.1 Threat Model

In our attack model, we assume that an attacker can be located either outside or inside of

the virtual networking system. The attacker’s primary goal is to exploit vulnerable VMs and

compromise them as zombies. Our protection model focuses on virtual-network-based attack

detection and reconfiguration solutions to improve the resiliency to zombie explorations.

Our work does not involve host-based IDS and does not address how to handle encrypted

traffic for attack detections. Our proposed solution can be deployed in an Infrastructure- s-a-

Service (IaaS) cloud networking system, and we assume that the Cloud Service Provider (CSP)

is benign. We also assume that cloud service users are free to install whatever operating systems

or applications.

3.2 Attack Graph Model

An attack graph is a modeling tool to illustrate all possible multi-stage, multi-host attack

paths that are crucial to understand threats and then to decide appropriate countermeasures [22].

In an attack graph, each node represents either precondition or consequence of an exploit.

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

201

September
2013

Attack graph is helpful in identifying potential threats, possible attacks and known

vulnerabilities in a cloud system.

Definition 1 (Scenario Attack Graph). An Scenario Attack Graph is a tuple SAG= (V, E), where,

1. V = NC[ND[NR denotes a set of vertices that include three types namely conjunction node

NC to represent exploit, disjunction node ND to denote result of exploit, and root node NR for

showing initial step of an attack scenario.

2. E = Epre [Epost denotes the set of directed edges. An edge e 2 Epre _ ND _ NC represents

that ND must be satisfied to achieve NC. An edge e 2 Epost _ NC _ ND means that the

consequence shown by ND can be obtained if NC is satisfied.

Node vc 2 NC is defined as a three tuple (Hosts; vul; alert) representing a set of IP addresses,

vulnerability information such as CVE [23], and alerts related to vc, respectively. ND behaves

like a logical OR operation and contains details of the results of actions.

NR represents the root node of the scenario attack graph. For correlating the alerts, we refer to

the approach described in [15] and define a new Alert Correlation Graph (ACG) to map alerts in

ACG to their respective nodes in SAG. To keep track of attack progress, we track the source and

destination IP addresses for attack activities.

Definition 2 (Alert Correlation Graph).

An ACG is a three tuple ACG = (A;E; P), where

1. A is a set of aggregated alerts. An alert a 2 A is a data structure (src; dst; cls; ts) representing

source IP address, destination IP address, type of the alert, and timestamp of the alert

respectively.

2. Each alert a maps to a pair of vertices (vc; vd) in SAG using map (a) function,

3. E is a set of directed edges representing correlation between two alerts

4. P is set of paths in ACG.

Algorithm 1 AlertCorrelation

Require: alert ac , SAG, ACG

if (ac is a new alert) then create node ac in ACG

n1 ← vc 2 map (ac)

for all n2 parent(n1) do

create edge (n2,alert,ac)

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

202

September
2013

for all Si containing a do

if a is the last element in Si then

append ac to Si

else

create path Si+ 1 ={ subset(Si a)a c}

end if

end for

add ac to n1 alert

end for

end if

return S

Definition 3 (VM State). Based on the information gathered from the network controller, VM

states can be defined as following:

1. Stable: there does not exist any known vulnerability on the VM.

2. Vulnerable: presence of one or more vulnerabilities on a VM, which remains unexploited.

3. Exploited: at least one vulnerability has been exploited and the VM is compromised.

4. Zombie: VM is under control of attacker.

IV. NICE SYSTEM DESIGN

In this section, we first present the system design overview of NICE and then detailed

descriptions of its components.

4.1 System design overview

The proposed NICE framework is illustrated in Figure 1.It shows the NICE framework within

one cloud server cluster. Major components in this framework are distributed and light-weighted

NICE-A on each physical cloud server, a network controller, a VM profiling server,

and an attack analyzer. The latter three components are located in a centralized control center

connected to software switches on each cloud server (i.e., virtual switches built on one or

multiple Linux software bridges).

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

203

September
2013

Fig 1.NICE framework within one cloud server cluster

4.2 SYSTEM COMPONENTS

In this section we explain each component of NICE.

4.2.1 NICE-A

The NICE-A is a Network-based Intrusion Detection System (NIDS) agent installed in either

dom0 or domU in each cloud server. It scans the traffic going through Linux bridges that control

all the traffic among VMs and in/out from the physical cloud servers. NICEA is a software agent

implemented in each cloud server connected to the control center through a dedicated and

isolated secure channel, which is separated from the normal data packets using OpenFlow

tunneling or VLAN approaches. The network controller is responsible for deploying attack

countermeasures based on decisions made by the attack analyzer.

4.2.2 VM Profiling

Virtual machines in the cloud can be profiled to get precise information about their state, services

running, open ports, etc.

VM profiles are maintained in a database and contain comprehensive information about

vulnerabilities, alert and traffic. The data comes from:

 Attack graph generator: while generating the attack graph, every detected vulnerability is added

to its corresponding VM entry in the database.

 NICE-A: the alert involving the VM will be recorded in the VM profile database.

 Network controller: the traffic patterns involving the VM are based on 5 tuples (source MAC

address, destination MAC address, source IP address, destination IP address, protocol). We can

have traffic pattern where packets emanate from a single IP and are delivered to multiple

destination IP addresses, and vice-versa.

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

204

September
2013

4.2.3 Attack Analyzer

The major functions of NICE system are performed by attack analyzer, which includes

procedures such as attack graph construction and update, alert correlation and countermeasure

selection.

The process of constructing and utilizing the Scenario Attack Graph (SAG) consists of three

phases: information gathering, attack graph construction, and potential exploit path analysis.

With this information, attack paths can be modelled using SAG.

In summary, NICE attack graph is constructed based on the following information:

 Cloud system information is collected from the node controller and VM’s Virtual

Interface (VIF) information.

 Virtual network topology and configuration information is collected from the network controller,

every VM’s IP address, MAC address, port information, and traffic flow information.

 Vulnerability information is generated by both on demand vulnerability scanning.

4.2.4 Network Controller

 The network controller is a key component to support the programmable networking

capability to realize the virtual network reconfiguration feature based on Open- Flow protocol

[20]. In NICE, within each cloud server there is a software switch, for example, Open vSwitch

(OVS) [5], which is used as the edge switch for VMs to handle traffic in & out from VMs. The

network controller is responsible for collecting network information of current OpenFlow

network and provides input to the attack analyzer to construct attack graphs.

V. MITIGATION AND COUNTERMEASURES

In this section, we present the methods for selecting the countermeasures for a given attack

scenario. The countermeasure serves the purpose of 1) protecting the target VMs from being

compromised; and 2) making attack behavior stand prominent so that the attackers’ actions can

be identified.

5.1 Mitigation Strategies

Based on the security metrics defined in the previous subsection, NICE is able to construct the

mitigation strategies in response to detected alerts. First, we define the term countermeasure pool

as follows:

Definition 4 (Countermeasure Pool).

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

205

September
2013

A countermeasure pool CM = (cm1; cm2;: : ; cmn) is a set of countermeasures. Where

1. Cost is the unit that describes the expenses required to apply the countermeasure in terms of

resources and operational complexity, and it is defined in a range from 1 to 5, and higher metric

means higher cost;

2. intrusiveness is the negative effect that a countermeasure brings to the Service Level

Agreement (SLA) and its value ranges from the least intrusive (1) to the most intrusive (5), and

the value of intrusiveness is 0 if the countermeasure has no impacts on the SLA;

3.Condition is the requirement for the corresponding countermeasure;

4. Effectiveness is the percentage of probability changes of the node, for which this

countermeasure is applied.

TABLE 1

Possible Countermeasure Types

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

206

September
2013

5.2 Countermeasure selection

Algorithm 2 presents how to select the optimal countermeasure for a given attack scenario. Input

to the algorithm is an alert, attack graph G, and a pool of countermeasures CM. The algorithm

starts by selecting the node vAlert that corresponds to the alert generated by a NICE-A. The

countermeasure which when applied on a node gives the least value of ROI, is regarded as the

optimal countermeasure. Finally, SAG and ACG are also updated before terminating the

algorithm.

Algorithm 2 Countermeasure Selection

Require: Alert;G(E; V);CM

Let vAlert = Source node of the Alert

if Distance to Target(vAlert) > threshold then

Update ACG

Return

end if

Let T = Descendant(vAlert) U vAlert

Set Pr(vAlert) = 1

Calculate Risk Prob(T)

Let benefit[jTj; jCMj] = Ø

for each t E T do

for each cm E CM do

if cm:condition(t) then

 Pr(t) = Pr(t) (1-cm:effectiveness)

 Calculate Risk Prob(Descendant(t))

benefit[t; cm] = Pr(target node): (7)

 end if

 end for

 end for

 Let ROI[jTj; jCMj] = Ø

 for each t E T do

 for each cm E CM do

ROI[t; cm]

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

207

September
2013

end for

end for

Update SAG and Update ACG

return Select Optimal CM(ROI)

VI. PERFORMANCE EVALUATION

In this section we present the performance evaluation of NICE. Our evaluation is conducted in

two directions: the security performance, and the system computing and network reconfiguration

overhead due to introduced security mechanism.

6.1 Security Performance Analysis

To demonstrate the security performance of NICE, we created a virtual network testing

environment consisting of all the presented components of NICE.

6.1.1 Environment and Configuration

To evaluate the security performance, a demonstrative virtual cloud system consisting of public

(public virtual servers) and private (VMs) virtual domains is established as shown in Figure 3.

Cloud Servers 1 and 2 are connected to Internet through the external firewall.

6.1.2 Attack Graph and Alert Correlation

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

208

September
2013

The attack graph can be generated by utilizing network topology and the vulnerability

information, and it is shown in Figure 4. As the attack progresses, the system generates various

alerts that can be related to the nodes in the attack graph. Creating an attack graph requires

knowledge of network connectivity, running services and their vulnerability information. This

information is provided to the attack graph generator as the input.

Definition 5 (VM Security Index). VSI for a virtual machine k is defined as V SIk = (Vk +

Ek)=2, where

1. Vk is vulnerability score for VM k. The score is the exponential average of base score from

each vulnerability in the VM or a maximum 10, i.e., Vk = minf10; lnPeBaseScore(v)g.

2. Ek is exploitability score for VM k. It is the exponential average of exploitability score for all

vulnerabilities or a maximum 10 multiplied by the ratio of network services on the VM, i.e.,

Basically, vulnerability score considers the base scores of all the vulnerabilities on a VM.

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

209

September
2013

6.2 NICE System Performance

We evaluate system performance to provide guidance on how much traffic NICE can handle for

one cloud server and use the evaluation metric to scale up to a large cloud system. In a real cloud

system, traffic planning is needed to run NICE, which is beyond the scope of this paper. Due to

the space limitation, we will investigate the research involving multiple cloud clusters in the

future.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented NICE, which is proposed to detect and mitigate collaborative attacks

in the cloud virtual networking environment. NICE utilizes the attack graph model to conduct

attack detection and prediction. The proposed solution investigates how to use the

programmability of software switches based solutions to improve the detection accuracy and

defeat victim exploitation phases of collaborative attacks. The system performance evaluation

demonstrates the feasibility of NICE and shows that the proposed solution can significantly

reduce the risk of the cloud system from being exploited and abused by internal and external

attackers. NICE only investigates the network IDS approach to counter zombie explorative

attacks. In order to improve the detection accuracy, host-based IDS solutions are needed to be

incorporated and to cover the whole spectrum of IDS in the cloud system. This should be

investigated in the future work. Additionally, as indicated in the paper, we will investigate the

scalability of the proposed NICE solution by investigating the decentralized network control and

attack analysis model based on current study.

 IJMIE Volume 3, Issue 9 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering

http://www.ijmra.us

210

September
2013

REFERENCES

 [1] R. Sadoddin and A. Ghorbani, “Alert correlation survey: framework and techniques,” in

Proceedings of the 2006 International Conference on Privacy, Security and Trust: Bridge the Gap

Between PST Technologies and Business Services, ser. PST ’06. New York, NY, USA: ACM,

2006, pp. 37:1–37:10.

[2] S. Roschke, F. Cheng, and C. Meinel, “A new alert correlation algorithm based on attack

graph,” in Computational Intelligence in Security for Information Systems, ser. Lecture Notes in

Computer Science. Springer, 2011, vol. 6694, pp. 58–67.

[3] Coud Sercurity Alliance, “Top threats to cloud computing v1.0,”

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf, March 2010.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53, no.

4, pp. 50–58, Apr. 2010.

[5] B. Joshi, A. Vijayan, and B. Joshi, “Securing cloud computing environment against DDoS

attacks,” in Computer Communication and Informatics (ICCCI), 2012 International Conference

on, Jan. 2012, pp.1 –5.

[6] H. Takabi, J. B. Joshi, and G. Ahn, “Security and privacy challenges in cloud computing

environments,” IEEE Security & Privacy, vol. 8, no. 6, pp. 24–31, Dec. 2010.

[7] “Open vSwitch project,” http://openvswitch.org, May 2012.

[8] Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson, and J. Barker, “Detecting spam

zombies by monitoring outgoing messages,” Dependable and Secure Computing, IEEE

Transactions on, vol. 9, no. 2, pp. 198 –210, Apr. 2012.

[9] “Metasploit,” http://www.metasploit.com.

[10] http://www.fastandeasyhacking.com.

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://www.metasploit.com/

